dimers which crystallize in the space group $P4_32_12$ with Z = 4. In addition, the molecules of (2) and floccosin resemble each other with respect to the orientation of the two nearly planar three-ring systems. The interatomic distances and angles found for xanthomegnin agree with comparable values reported for floccosin.

We thank Dr J. K. Stalick for assistance and helpful comments. We are grateful for support from the National Bureau of Standards Graduate Cooperative Education Program and from the Food and Drug Administration, FDA-NBS Interagency Agreement 224-80-3009.

References

- BRISSE, F., JUST, G. & BLANK, F. (1978). Acta Cryst. B34, 557-562.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321–324.
- DURLEY, R. C., MACMILLAN, J., SIMPSON, T. J., GLEN, A. T. & TURNER, W. B. (1975). J. Chem. Soc. Perkin Trans. 1, pp. 163–169.
- GERMAIN, G., MAIN, P. & WOOLFSON, M. M. (1971). Acta Cryst. A27, 368-376.

- HöFLE, G. & Röser, K. (1978). J. Chem. Soc. Chem. Commun. pp. 611-612.
- ITO, Y., KAWAI, K. & NOZAWA, Y. (1973). J. Biochem. 74, 805–810.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
- JUST, G., DAY, W. C. & BLANK, F. (1963). Can. J. Chem. 41, 74-79.
- NG, A. S., JUST, G. & BLANK, F. (1969). Can. J. Chem. 47, 1223-1227.
- SIMPSON, T. J. (1977). J. Chem. Soc. Perkin Trans. 1, pp. 592–595.
- STACK, M. E., EPPLEY, R. M., DREIFUSS, P. A. & POHLAND, A. E. (1977). Appl. Environ. Microbiol. 33(2), 351–355.
- STACK, M. E., MAZZOLA, E. P. & EPPLEY, R. M. (1979). Tetrahedron Lett. pp. 4989–4992.
- STACK, M. E. & MISLIVEC, P. B. (1978). Appl. Environ. Microbiol. 36(4), 552–554.
- STEWART, J. M., MACHIN, P. A., DICKINSON, C., AMMON, H. L., HECK, H. & FLACK, H. (1976). The XRAY system – version of March 1976. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- WIRTH, J. C., BEESLEY, T. E. & ANAND, S. R. (1965). *Phytochemistry*, 4, 505-509.

Acta Cryst. (1981). B37, 1935–1938

5-[(p-Chlorobenzamido)methylene]-1,3-dimethyl-2,4,6(1H,3H,5H)-pyrimidinetrione

BY M. C. Apreda, F. H. CANO, C. FOCES-FOCES AND S. GARCÍA-BLANCO

Departamento de Rayos X, Instituto de Química-Física 'Rocasolano', Serrano 119, Madrid-6, Spain

(Received 24 February 1981; accepted 21 April 1981)

Abstract. $C_{14}H_{12}ClN_{3}O_{4}$, monoclinic, $P2_{1}/c$, $a = 15 \cdot 5124$ (11), $b = 7 \cdot 2375$ (3), $c = 13 \cdot 3737$ (10) Å, $\beta = 108 \cdot 69$ (1)°, $V = 1422 \cdot 3$ (2) Å³, Z = 4, $D_{x} = 1 \cdot 495$ Mg m⁻³, $M_{r} = 321 \cdot 72$, μ (Cu K α) = 2 $\cdot 59$ mm⁻¹. The structure was solved by Patterson and Fourier techniques. R and R_{w} were 0 $\cdot 059$ and 0 $\cdot 084$ respectively for 2038 observed reflexions. The Cl–C (benzene) distance and the *ipso* angle are 1 $\cdot 741$ (2) Å and 122 $\cdot 0$ (3)° respectively. There is an intramolecular hydrogen bond $[N-H \cdots O = 149 (4)^{\circ}]$.

Introduction. The title compound is the by-product of a reaction which took place when acylation of the C(5) atom in the nucleus of a pyrimidine was attempted. The structure determination was carried out in order to establish the structural formula (Fig. 1).

0567-7408/81/101935-04\$01.00

Unit-cell dimensions were obtained and refined by a least-squares procedure from the setting angles of 78 reflexions with $\theta \le 45^{\circ}$. The data were collected on a four-circle diffractometer in the $\omega/2\theta$ scan mode. Graphite-monochromatized Cu $K\alpha$ radiation was used. 2419 independent reflexions were recorded, 2038 of which were considered as observed $[I > 2\sigma(I)]$. An

Fig. 1. Structural formula of the title compound. © 1981 International Union of Crystallography

absorption correction was applied ($\mu = 2.59 \text{ mm}^{-1}$; crystal size: $0.09 \times 0.24 \times 0.38$ mm) with maximum and minimum transmission factors of 0.802 and 0.536 respectively (ORABS from XRAY 70; Stewart, Kundell & Baldwin, 1970).

The Cl atom was located in a Patterson map and the other non-hydrogen atoms were found in successive Fourier syntheses.

After several cycles of least-squares refinement, a difference synthesis revealed the positions of the H atoms, which were refined isotropically. A weighting scheme (see Table 1) was applied to give no trends in $\langle w \Delta^2 \rangle vs | F_o |$ and $\sin \theta / \lambda$.

The molecule is shown in Fig. 2 (ORTEP, Johnson, 1965) with the numbering system. The residual δR_w full-normal probability plot (Abrahams & Keve, 1971) is shown in Fig. 3 and indicates the consistency of the weighting scheme. DP is defined as $(F_o - F_c)/(\sigma_o^2 +$ $\sigma_c^2)^{1/2}$ and X is the expected DP value for a normal distribution, N_t is the total number of observations (based on F's), R_t is the corresponding interexperimental agreement factor, N is the number of observations in the interval DP, and R is the usual crystallographic residual factor. The equation of the straight line, with e.s.d.'s in parentheses, was obtained through a least-squares fitting. ρ is the correlation coefficient and χ^2 is an estimator of the fitting.*

In Tables 2 and 3 are displayed the atomic coordinates and equivalent isotropic thermal parameters for the non-hydrogen atoms, and the atomic coordinates for the H atoms together with their bond distances.[†] Table 4 shows bond distances and angles for the heavy atoms.

$$\frac{*\rho - \mu_{11}/\sigma_x \sigma_y, \chi^2 = \sigma_y^2(1 - \rho^2), \sigma_x^2 = \mu_{20}, \sigma_y^2 = \mu_{02}, \mu_{ij} = \sum_{1}^{N} (DP_n)^{ij} (X_n - \bar{X})^{ij}.$$

[†] Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36131 (19 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table 1. Function and coefficients for the weighting scheme

$$w_T = K \{ 1/|f(|F_o|)|^2 \} | 1/f(\sin \theta/\lambda)|; \quad K = 0.4167; \quad f(|F_o|) = a + b|F_o| + c|F_o|^2$$

$$\begin{array}{ccccccc} & a & b & c \\ |F_o| \leq 1.0 & 0.5102 & -0.0561 & 0.0059 \\ 1.0 < |F_o| \leq 11.0 & 0.4178 & -0.0459 & 0.0048 \\ 11.0 < |F_o| \leq 33.0 & 0.5516 & 0.0340 & - \\ 33.0 < |F_o| & 0.2298 & 0.0142 & - \\ & f(\sin \theta/\lambda) = d \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

Fig. 2. An ORTEP plot of the molecule showing the atomic numbering.

Table 2. Atomic coordinates (×10⁵) and U_{eq} (Å²×10⁴) for the non-hydrogen atoms

 $U_{eq} = \frac{1}{3} \sum_{i} \sum_{i} U_{ii} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_i.$

	x	у	Z	U_{eq}
N(1)	92502 (14)	52111 (37)	27558 (20)	590 (8)
C(2)	93022 (20)	53987 (42)	17541 (25)	588 (10)
N(3)	85490 (16)	49381 (41)	9109 (20)	612 (8)
C(4)	77455 (20)	42749 (44)	10286 (26)	620 (10)
C(5)	77139 (17)	41109 (42)	20986 (23)	581 (10)
C(6)	84949 (19)	45928 (43)	29986 (23)	586 (9)
C(7)	100516 (22)	57136 (65)	36584 (30)	762 (13)
O(8)	99948 (15)	59680 (45)	16167 (21)	813 (10)
C(9)	86082 (29)	51773 (78)	-1524(29)	841 (16)
O(10)	71053 (16)	38802 (43)	2383 (20)	778 (9)
O(11)	85060 (15)	45164 (43)	39107 (17)	755 (9)
C(12)	69536 (19)	34664 (43)	22920 (26)	592 (10)
N(13)	61845 (16)	30336 (40)	15191 (22)	629 (9)
C(14)	53925 (19)	24299 (45)	17064 (23)	606 (10)
O(15)	53558 (15)	22322 (52)	25827 (19)	852 (10)
C(1')	46073 (15)	20840 (41)	7317 (21)	556 (9)
C(2')	38150 (21)	13987 (52)	8780 (25)	653 (11)
C(3')	30554 (21)	10072 (50)	233 (26)	664 (11)
C(4')	30959 (16)	13084 (40)	-9718 (21)	563 (9)
C(5')	38735 (21)	19592 (47)	-11434(25)	638 (10)
C(6')	46253 (20)	23463 (50)	-2848(25)	628 (10)
Cl	21403 (5)	8306 (10)	-20515 (7)	723 (3)

Table 3. Atomic coordinates $(\times 10^3)$ for the hydrogen atoms and their bond distances

The H-atom numbering corresponds to that of the atoms to which they are bonded.

	х	У	Ζ	
H(7a)	1028 (5)	442 (11)	418 (6)	1·15 (7) Å
H(7b)	982 (6)	644 (13)	410 (7)	0.94(10)
H(7c)	1051 (7)	591 (15)	330 (7)	0.98(12)
H(9a)	795 (5)	531 (9)	-68(5)	1.04 (6)
H(9 <i>b</i>)	860 (5)	404 (11)	-38(6)	0.88 (8)
H(9c)	916 (4)	581 (8)	-13(4)	0.96 (7)
H(12)	691 (2)	336 (5)	297 (3)	0.94(4)
H(13)	632 (3)	320 (6)	87 (4)	0.97(5)
H(2')	381 (3)	110 (6)	157 (3)	0.95(5)
H(3')	249 (3)	57 (5)	10 (3)	0.97(5)
H(5')	394 (4)	220 (8)	-188(4)	1.04 (6)
H(6')	510 (3)	287 (6)	-46 (3)	0.92 (5)

Table 4. Bond distances (Å) and angles (°)

N(1)-C(2) = 1.3	374 (5)	C(12) - N(13)	1.3	42 (4)
N(1) - C(6) = 1.3	387 (4)	N(13) - C(14)	1.4	00 (4)
N(1) - C(7) = 1.4	174 (4)	C(14)-O(15)	1.2	00 (4)
C(2) - N(3) = 1 - 3	380 (3)	C(14) - C(1')	1.4	93 (4)
$C(2) - O(8) = 1 \cdot 2$	218 (4)	C(1') - C(2')	1.3	96 (5)
N(3)-C(4) = 1.3	391 (4)	C(1') - C(6')	1.3	82 (5)
N(3)-C(9) = 1.4	64 (5)	C(2') - C(3')	1.3	83 (4)
C(4) - C(5) = 1.4	152 (5)	C(3') - C(4')	1.3	70 (5)
C(4) - O(10) = 1.2	230 (4)	C(4') - C(5')	1.3	81 (5)
C(5)-C(6) = 1.4	150 (4)	C(4')-Cl	1.7	41 (2)
C(5)-C(12) = 1.3	368 (5)	C(5') - C(6')	1.3	78 (4)
C(6)-O(11) 1.2	216 (4)			
C(6) = N(1) = C(7)	116.2 (3)	N(1) = C(6) = O(1)	n l	120.6 (3)
C(2) = N(1) = C(7)	118.4(3)	C(5) = C(12) = N(1)	3	120.0 (3)
C(2) = N(1) = C(6)	$125 \cdot 3 (3)$	C(12) = N(13) = C(12)	(14)	123.4 (3)
N(1) - C(2) - O(8)	120.7(3)	N(13)-C(14)-C(14)	(1)	114.4 (3)
N(1)-C(2)-N(3)	$118 \cdot 3(3)$	N(13) - C(14) - O(14)	(15)	$122 \cdot 1$ (3)
N(3)-C(2)-O(8)	121.0(3)	O(15) - C(14) - C(14)	(1')	123.5 (3)
C(2) - N(3) - C(9)	117.7(3)	C(14) - C(1') - C(1'	6')	124.6 (3)
C(2) - N(3) - C(4)	$123 \cdot 1(3)$	C(14) - C(1') - C(1'	2′)	116.5 (3
C(4) - N(3) - C(9)	119.2(3)	C(2') - C(1') - C(6')	5)	118.9 (3
N(3)-C(4)-O(10)	119.3(3)	C(1') - C(2') - C(3)	3Ý)	120.8 (3
N(3)-C(4)-C(5)	117.0 (3)	C(2') - C(3') - C(4')	ľ)	118.6 (3)
C(5)-C(4)-O(10)	123.7 (3)	C(3') - C(4') - C(4'		118.8 (2)
C(4)-C(5)-C(12)	121.2 (3)	C(3')-C(4')-C(4')	5')	122.0 (3)
C(4) - C(5) - C(6)	121.0 (3)	C(5') - C(4') - C(4'		119.1 (2)
C(6)-C(5)-C(12)	117.8 (3)	C(4')-C(5')-C(6')	5')	118.8 (3)
N(1)-C(6)-C(5)	115.3 (3)	C(1')-C(6')-C(5')	5')	120.9 (3)
C(5)-C(6)-O(11)	124.1 (3)			

Atomic scattering factors were taken from *Inter*national Tables for X-ray Crystallography (1974). A final difference map showed peaks within ± 0.28 e Å⁻³.

Discussion. The molecule can be considered as divided into three parts: the pyrimidine ring (plane 1: $\chi^2 = 9.9$), the central chain (plane 2: $\chi^2 = 141.1$), and the benzene nucleus (plane 3: $\chi^2 = 12.2$) with the substituent. The dihedral angles formed by the three planes are 177.3 (6), 176.7 (7) and 1.5 (6)° for planes 1 and 2, 1 and 3, and 2 and 3 respectively.

As far as the central chain is concerned, some kind of delocalization could be considered to contribute significantly to the shortening of C-substituent bonds: C(12)-N(13) and C(5)-C(6) are shorter while C(12)-C(5) is longer than usual (Lide, 1962).

The distortions in the benzene ring have been analysed following the data given by Domenicano, Vaciago & Coulson (1975). We have considered two points of their paper: (a) Table 9 (C-Cl bond lengths and α angles in *para*-substituted chlorobenzenes) and (b) Fig. 3 (plot of the internal angle α vs the C-substituent bond length for the phenyl derivatives of second-row elements).

(a) From the references given for compounds with para $C(sp^2)$ substituents we found the following ranges: $Cl-C [1.745 (5) - 1.728 (6) Å], \alpha [122.2 (5) - 121.0 (2)^{\circ}], \beta [119.7 (2) - 117.5 (5)^{\circ}], \gamma [121.9 (5) - 119.3 (5)^{\circ}]$ and $\delta [121.0 (5) - 118.2 (3)^{\circ}]$ (Domenicano & Vaciago, 1979). In our case, $Cl-C = 1.741 (2) Å, \alpha = 122.0 (3), \beta = 118.3 (3), \gamma = 120.9 (3)$ and $\delta = 118.9 (3)^{\circ}$ (see Fig. 1). Of these, the first two results are almost at the extremes of the given ranges.

(b) A straight line (see Fig. 4) has been fitted for the dependence of the angle α on the C-X(benzene) distance (point 1 of the figure is not included in the fitting). The mean deviation from each point to the fitted line is 0.0062, being 0.0192 for the values obtained in the present compound.

Thermal motion has been analysed in terms of the rigid-body **TLS** model (Schomaker & Trueblood, 1968; Filippini & Gramaccioli, 1969). The corrections in distances and angles were not significant in terms of the standard deviations.

There is an intramolecular hydrogen bond which seems to have some influence on the planarity of the central chain and on the stability of the molecule. $O(10)\cdots H(13) = 1.75 (5) \text{ Å}, N(13)-H(13) = 0.97 (5) \text{ Å}, and N(13)\cdots O(10) = 2.630 (4) \text{ Å}.$ The

Fig. 4. The fitted straight line showing the dependence of the angle α on the C-X distance.

angles involved are: C(14)-N(13)-H(13) 131 (2), C(12)-N(13)-H(13) 105 (2), N(13)-H(13)-O(10)149 (4), H(13)-O(10)-C(4) 131 (1)°.

We thank Professor Aparicio and Dr Garcia-Granados for suggesting this study and for supplying the compound, and the Junta de Energia Nuclear (Madrid) for allowing us the use of the computer (Univac 1100/80).

References

ABRAHAMS, S. C. & KEVE, E. T. (1971). Acta Cryst. A27, 157–165.

- DOMENICANO, A. & VACIAGO, A. (1979). Acta Cryst. B35, 1382–1388.
- DOMENICANO, A., VACIAGO, A. & COULSON, C. A. (1975). Acta Cryst. B31. 1630–1641.
- FILIPPINI, G. & GRAMACCIOLI, C. M. (1969). *Ric. Sci.* **39**, 156–162.
- International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
- LIDE, D. R. JR (1962). Tetrahedron, 17, 125-134.
- SCHOMAKER, V. & TRUEBLOOD, K. N. (1968). Acta Cryst. B24, 63-76.
- STEWART, J. M., KUNDELL, F. A. & BALDWIN, J. C. (1970). The XRAY 70 system. Computer Science Center, Univ. of Maryland, College Park, Maryland.

Acta Cryst. (1981). B37, 1938-1941

Structure du (+)-p-Chlorobenzylidène-3,3' Di(bornanone-2) [(+)-Di(bornanone-2 yl-3) p-Chlorophényl Méthane]

PAR R. ROQUES

Laboratoire de Cristallographie de la Faculté des Sciences d'Abidjan, 04 BP 322, Abidjan, Côte d'Ivoire

J. SOTIROPOULOS*

Laboratoire de Chimie Organique Appliquée, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse CEDEX, France

ET J. P. DECLERCQ ET G. GERMAIN

Laboratoire de Chimie Physique et de Cristallographie, Université de Louvain, 1348 Louvain-la-Neuve, Belgique

(Reçu le 1 septembre 1980, accepté le 7 avril 1981)

Abstract. $C_{27}H_{35}ClO_2$, orthorhombic, $P2_12_12_1$, a = 6.835(2), b = 11.932(6), c = 29.039(18) Å, Z = 4, $d_m = 1.05$, $d_c = 1.19$ Mg m⁻³. The structure was solved by direct methods with *MULTAN* 78 and refined by full-matrix least-squares calculations to R = 0.046 for 1485 observed reflections. Although four stereo-isomers are theoretically possible, depending on the

0567-7408/81/101938-04\$01.00

stereochemical course of the reaction, only one is formed, $|\alpha|_D = +174^{\circ}$ (1.092 g dm⁻³, dioxane). The structural study shows that the two 2-oxobornyl groups are linked to the exocyclic carbon atom by their *endo* bonds, which establishes, with certainty, the stereo-chemical course of the reaction.

Introduction. La réaction de la (+)-bornanone-2 (I) et d'un (-)-arylidène-3 bornanone-2 (II), en milieu basique, suivant la Fig. 1 peut théoriquement donner © 1981 International Union of Crystallography

^{*} L'auteur auquel toute correspondance doit être adressée.